Math 210C Lecture 13 Notes

Daniel Raban

April 29, 2019

1 The Five Lemma, Chain Complexes, and Homology

1.1 The five lemma

I am omitting Professor Shatrifi's proof of the Snake Lemma. It's tough to read in notes and also tough to write down in real-time.¹ The following lemma has the same sort of argument, as well.

Lemma 1.1 (Five lemma). Let

$$\begin{array}{cccc} A & \stackrel{e}{\longrightarrow} & B & \stackrel{f}{\longrightarrow} & C & \stackrel{g}{\longrightarrow} & D & \stackrel{h}{\longrightarrow} & E \\ \downarrow^{\alpha} & & \downarrow^{\beta} & & \downarrow^{\gamma} & & \downarrow^{\delta} & & \downarrow^{\varepsilon} \\ A' & \stackrel{e'}{\longrightarrow} & B' & \stackrel{f'}{\longrightarrow} & C' & \stackrel{g'}{\longrightarrow} & D' & \stackrel{h'}{\longrightarrow} & E \end{array}$$

be a morphism of exact sequences in an abelian category C.

- 1. If β and δ are epimorphisms and ε is a monomorphism, then γ is an epimorphism.
- 2. If β and δ are monomorphisms and α is an epimorphism, then γ is a monomorphism.
- 3. If β and δ are isomorphisms, ε is a monomorphism, and α is an epimorphism, then γ is an isomorphism.

Proof. We will prove the first statement in the category of *R*-modules. Let $c' \in C'$. Then there is a $d \in D$ such that $\delta(d) = g'(c')$ (as g' is an epimorphism). Then $\varepsilon(h(d)) =$ $h'(\delta(d)) = h'(g'(c')) = 0$. Since ε is a monomorphism, h(d) = 0. So d = g(c) for some $c \in C$. So $g'(c' - \gamma(c)) = g'(c') - \delta(g(c)) = g'(c') - \delta(d) = 0$. So there exists a $b' \in B'$ such that $f'(b') = c' - \gamma(c)$. β is an epimorphism, so there is a $b \in B$ such that $\beta(b) = b'$. Now $\gamma(f(b)) = f'(\beta(b)) = f'(b') = c' - \gamma(c)$, so $c' = \gamma(f(b)) + \gamma(c) = \gamma(f(b) + c)$. That is, $c' \in im(\gamma, which means that \gamma$ is surjective.

¹I have a proof of the Snake Lemma in my UC Berkeley Math 250A notes.

If $f: A \to B$ is a morphism, we have the 4-term exact sequence

$$0 \longrightarrow \ker(f) \longrightarrow A \longrightarrow B \longrightarrow \operatorname{coker}(f) \longrightarrow 0$$

We can turn this into two 3-term exact sequences:

$$0 \longrightarrow \ker(f) \longrightarrow A \longrightarrow \operatorname{coim}(f) \longrightarrow 0$$
$$0 \longrightarrow \operatorname{im}(f) \longrightarrow B \longrightarrow \operatorname{coker}(f) \longrightarrow 0$$

We can always do this is a 4-term exact sequence.

1.2 Chain complexes and homology

Definition 1.1. A (chain) complex in an abelian category C is a sequence $A_{\cdot} = (A_i, A_i^A)_{i \in \mathbb{Z}}$ with defining interval \mathbb{Z} such that $d_i^A \circ d_{i+1}^A = 0$:

$$\cdots \longrightarrow A_{i+1} \xrightarrow{d_{i+1}^A} A_i \xrightarrow{d_i^A} A_{i-1} \longrightarrow \cdots$$

where $\operatorname{im}(d_{i+1}^A) \to \operatorname{ker}(d_i^A)$ is a monomorphism for all *I*. A morphism of complex is a morphism of sequences.

Remark 1.1. A "complex" $(A_i)_{i>0}$ is a complex where $A_i = 0$ for all i < 0.

Definition 1.2. The *i*-th homology group of a complex A_i is $H_i(A) = \ker(d_i^A) / \operatorname{im}(d_{i+1}^A)$.

Definition 1.3. A cochain complex is a sequence $A^{\cdot} = (A^i, d^i_A)_{i \in \mathbb{Z}}$ with $d^i_A : A^i \to A^{i+1}$

$$\cdots \longrightarrow A^{i-1} \xrightarrow{d_A^{i-1}} A_i \xrightarrow{d_A^i} A^{i+1} \longrightarrow \cdots$$

Definition 1.4. The *i*-th cohomology group of a cochain complex A^{\cdot} is $H^{i}(A) = \ker(d_{A}^{i}) / \operatorname{im}(d_{A}^{i}i+1)$.

Remark 1.2. A is exact iff $H_i(A) = 0$ for al $i \in \mathbb{Z}$.

The homology groups measure how close your sequence is to being exact.

Example 1.1. Consider the chain complex in Ab:

$$\cdots \longrightarrow \mathbb{Z}/n^3 \mathbb{Z} \xrightarrow{n^2} \mathbb{Z}/n^3 \mathbb{Z} \xrightarrow{n^2} \mathbb{Z}/n^3 \mathbb{Z} \longrightarrow \cdots$$

Then

$$H_i(A) = \frac{n\mathbb{Z}/n^3\mathbb{Z}}{n^2\mathbb{Z}/n^3\mathbb{Z}} \cong n\mathbb{Z}/n^2\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z}$$

Lemma 1.2. Let $f_{\cdot}: A_{\cdot} \to B_{\cdot}$ be a morphism of complexes. Then there is a morphism $f_i^*: H_i(A) \to H_i(B)$, natural in f such that the diagram

commutes.

Proof. We will prove this in $\mathcal{C} = R$ – Mod. Let $a \in \ker(d_i^A)$ maps to $\overline{a} \in H_i(A)$. Then $d - i^B(f_i(A) = f_{i-1}(d_i^A(a)) = 0$. So $f_i(a) \in \ker(d_i^B)$. So $\ker(d_i^A \to \ker(d_i^B))$, If $a = d_{i+1}^A$, then $f_i(a) = d_{i+1}^B(d_{i+1}(a')) \in \operatorname{im}(d_{i+1}^B)$, and the map factors through $H_i(A)$ to give f_i^* . Check that $f_i^*(A) = \overline{f_i(a)}$.